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Building on results from two-dimensional magnetohydrodynamic (MHD) turbulence 
(Shebalin, Matthaeus & Montgomery 1983), the development of anisotropic states 
from initially isotropic ones is investigated numerically for fully three-dimensional 
incompressible MHD turbulence. It is found that when an external d.c. magnetic field 
(B,) is imposed on viscous and resistive MHD systems, excitations are preferentially 
transferred to modes with wavevectors perpendicular to B,. The anisotropy increases 
with increasing mechanical and magnetic Reynolds numbers, and also with increasing 
wavenumber. The tendency of B,, to inhibit development of turbulence is also 
examined. 

1. Introduction 
Many geo- and astrophysical plasmas may be fruitfully considered within the 

framework of magnetohydrodynamic (MHD) theory (e.g. Parker 1979). Moreover, it 
is often the case that these magnetofluids contain, or are threaded by, a large-scale 
magnetic field (B,), which varies ‘slowly’ on both temporal and spatial scales of 
dynamical interest and importance. Thus, at least locally, B, may be approximated as 
being both (a) constant in time, and (b) spatially uniform, approximations which can 
considerably simplify analysis of the system. For example, various features of the solar 
corona (e.g. coronal holes with their open field lines, the magnetic structures associated 
with prominences, and coronal loops and arcades) may be modelled using such a 
‘magnetofluid + B,, ’ approximation, albeit crudely in some cases. Other systems where 
such an approximation is useful include the solar wind, where inertial-range MHD- 
scale fluctuations are subject to an approximate Parker (1958) spiral B,, and various 
fusion devices involving large toroidal magnetic fields (e.g. tokamaks). In this paper we 
numerically investigate a particularly simple model of such systems, namely a periodic 
cube of incompressible magnetofluid threaded by a uniform static magnetic field B,. 

Of course, the investigation described herein is also of interest to turbulence theorists 
in its own right, independent of its applicability to any geo- or astrophysical systems. 
Also, as Shebalin, Matthaeus & Montgomery (1983, hereafter referred to as SMM) 
noted, derivation of the Strauss equations (Strauss 1976; Montgomery 1982), which 
have proved useful in connection with tokamak dynamics, required an initial 
anisotropy. Thus, if three-dimensional simulations support and/or extend SMM’s 
two-dimensional results regarding the development of anisotropy given a B,, further 
evidence will have been obtained for the validity of these well-used equations of 
reduced MHD. We note in passing that the theoretical validity of the Strauss equations 
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has recently been put on firmer footing in the limits p + I and z 1, where [j is the 
usual ratio of gas and magnetic pressures (Zank & Matthaeus 1992a). 

A decade ago SMM, in a numerical study of freely decaying incompressible two- 
dimensional MHD turbulence, showed that initially isotropic states evolved into 
strongly anisotropic ones when a uniform external magnetic jield was present. 
Unfortunately, prevailing computational limitations prevented testing of their 
conjecture that such anisotropy would also be seen in fully three-dimensional systems. 
Here we report on an extension of this work to three-dimensional systems, and show 
that their predictions are substantially correct. 

By way of review we draw attention to the main results found by SMM. Most of 
their results were presented in Fourier space, where the wavevector k is the Fourier- 
transform variable conjugate to the coordinate space variable x. We also adopt this 
approach. SMM found that the anisotropy developed in the direction perpendicular to 
the applied d.c. field (B,), in the sense that energy preferentially built up in the modes 
with wavevectors k perpendicular to B,, relative to modes with k parallel to B,. A 
physically appealing explanation for the phenomenon was given based on a weak 
turbulence analysis of the dynamical equations (i.e. the first-order nonlinear corrections 
to the solutions of the linearized equations were computed). Briefly, they argued that 
two excited Fourier modes will resonate effectively with a third, only if the first two 
modes are oppositely propagating and satisfy certain matching conditions (the 
nonlinear terms in the MHD equations exactly cancel for AlfvCn wave solutions, hence 
waves propagating in the same direction do not generate additional modes). 
Numbering these modes 1, 2 and 3 ,  respectively, with wavevectors ki and frequencies 
w(k,), the necessary matching conditions are 
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k,  = k ,  + k,, (1) 
* w ( k , )  = w(k,)-oj(k,), (2) 

where modes with frequencies of opposite sign propagate in opposite directions along 
B,. However, since this is a weak turbulence analysis o(k)  = -t-Ik-B,I, and the above 
equations imply that either w(k,)  = 0 or w(k,)  = 0. Thus, either k ,  or k ,  is perfectly 
perpendicular to B,. It follows that the third mode can have k ,  greater than that of 
either of the exciting modes, but k,, l l  cannot exceed the maximum of k, ,  and k,,.ll. 
Excitations of this nature can therefore readily transfer energy perpendicular to B, in 
k-space, but not parallel to it. The anisotropy was found to increase as each of the 
following quantities increased: (a)  B, (although saturation occurred for B, 2 2); (b) 
wavenumber; (c) Reynolds numbers; and ( d )  time (although again saturation can 
occur). As we show below, this behaviour carries through to the fully three- 
dimensional case without essential modification. 

Moffatt (1967) has also considered the influence of a uniform magnetic field on 
MHD turbulence. His analytic study focused on the linear dynamics associated with 
the early time development of flows where the initial conditions involve a turbulent 
velocity field but no magnetic fluctuations. The study presented here is therefore 
complementary to Moffatt’s and the relationship will be discussed in more detail in $8. 

The paper is structured as follows. In $2 we introduce the equations investigated and 
give a brief discussion on the numerics. Section 3 presents results from non-dissipative 
runs, useful for testing the precision and accuracy of the code. Sections 4-6 are the 
heart of the paper, detailing the development of anisotropy (from initially isotropic 
states) as a function of mean field strength, Reynolds numbers, and rugged invariants. 
Section 7 considers the influence of B, on some other aspects of the turbulence, and the 
paper closes with a discussion section and a summary of the results. 
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2. Definitions, dynamical equations, and numerical details 
The constant-density ( p )  incompressible three-dimensional MHD equations, in the 

presence of a uniform and static external magnetic field (B,), may be written in 
dimensionless form as 

(3) 

(4) 

v*v = 0, ( 5 )  
V * b  = 0, (6) 

where v is the velocity field, b the fluctuating magnetic field, and p" is the total 
(kinetic + magnetic) pressure - determined by the incompressibility condition. The 
dimensionless kinematic viscosity, v, and magnetic diffusivity, 7, are both uniform 
scalars, and their reciprocals respectively define the large-scale mechanical (Re) and 
magnetic (Rm) Reynolds numbers. For convenience we also refer to 7 as the resistivity. 
Time, t ,  is measured in units of the initial large-scale eddy turnover time, i.e. the unit 
lengthscale divided by the initial unit velocity scale. Note that since v and b represent 
fluctuations relative to the mean fields U (= 0) and B,, they are zero-mean quantities. 
We take the d.c. magnetic field to be in the z-direction, i.e. Bo = B,2. The non- 
dimensionalization is such that for the chosen initial conditions (see below), Bt is the 
ratio of the energy density associated with B, to that associated with the initial 
magnetic fluctuations, b(t = 0). 

The fluid mass density p is spatially uniform and constant in time, whereas all other 
fields are in general functions of space x = (x, y ,  z )  and time t. The runs discussed here 
have approximately zero magnetic helicity at all times (see Stribling, Matthaeus & 
Ghosh 1994a and Stribling, Matthaeus & Oughton 19943 for a discussion of runs with 
non-zero H,) and were performed at unit magnetic Prandtl number (i.e. v = 7). Using 
Braginskii's (1965) forms for the viscosity and magnetic diffusivity of a collision- 
dominated fully ionized Hydrogen plasma it can be shown (e.g. Hollweg 1985, 1986) 
that v / r  M 3 x 10-6T4/n, where T is the plasma temperature in K and n the plasma 
number density (per cm3). For geo- and astrophysical conditions this ratio spans an 
enormous range. In the Sun's photosphere for example it is - lop7, while in the corona 
it is - lo1'. Our computational resources were adequate for examining cases with 
v = 7 z 1/200, but decreasing either v or 7 by even one order of magnitude requires a 
code resolution greater than that available to us, in order to maintain accuracy. In this 
initial investigation the simulations have therefore been restricted to the case v = 7. 

In these units the electric current density i s j  = V x b, the fluid vorticity o = V x v ,  
and the magnetic vector potential is related to the field by b = V x a, with the stream 
function defined by v = V x v / .  The Coulomb gauge is assumed to be in effect for both 
a and v/  (e.g. V a a  = 0). We denote the kinetic and magnetic energies per unit mass by 
E" = ( v 2 / 2 ) ,  and Eb = ( b 2 / 2 ) ,  where the angle brackets denote spatial averaging, 
here assumed to be equivalent to ensemble averaging. We will have occasion to refer 
to both the bulk values of E" and E b  and also to their spectra E"(k), etc. The bulk 
variables ('globals') characterizing the fluid can be interpreted in two ways: (a)  x-space 
averages of the appropriate (scalar) field, e.g. E" = ( v 2 ) / 2 ,  and (3) integrals of the 
associated spectra over all wavenumbers, e.g. E" = d3kEv(k). 

It is well known that the ideal MHD equations support an infinite number of 

av -+ u * V V  = - Vp* + b .  V b  + B, * V b  + vV2v, 
c?t 

i3b 
- + 0- V b  = b-  VV + Bo* V V  + yV2b, ar 



98 S.  Oughton, E. R. Priest and W .  H. Matthaeus 

invariants. Since invariants place constraints on the evolution and dynamical behaviour 
of a system it is important to identify the ideal invariants of greatest relevance to real 
dissipative systems. For turbulent flows these are believed to be the rugged invariants. 
These quadratic quantities remain invariant even when the ideal MHD equations are 
truncated at arbitrary maximum and minimum lengthscales (Kraichnan 1967). In 
contrast, it is believed that the other ideal continuum invariants are destroyed by such 
a truncation. The three rugged invariants of ideal three-dimensional MHD (with 
B, = 0) - namely, total energy, cross-helicity, and magnetic helicity - are denoted by 
E = E"+ Eb,  H, = (u.b)/2, and H, = ( a .  b)/2, respectively (see for example, Frisch 
et al. 1975; Stribling 1991). It is also useful to define the normalized cross-helicity, 
(T, = 2HJE. Again, both the global and the spectral forms of the quantities are useful. 
Note that when B, =+ 0 the magnetic helicity is no longer a rugged invariant (Matthaeus 
& Goldstein 1982; Stribling et al. 1994a, b). 

Both the spatial and the (discrete) Fourier representations of the fields will be used; 
for the velocity field these are related by 

u(x, t )  = C u(k, t )  (7) 
k 

where k is the wavevector conjugate to x and having magnitude k = Ikl. Analogous 
expansions and definitions hold for the other fields. It will usually be clear from the 
context whether the spatial or spectral representation of the field is being referred to, 
so that the field's argument will often be omitted. The time dependence of the fields is 
also rarely explicitly written. 

Equations (3) and (4) (or more specifically their Fourier transforms), with periodic 
boundary conditions imposed, are solved using a dealiased Fourier Galerkin spectral 
code (Orszag 1971; Gottlieb & Orszag 1977; Canuto et al. 1988). In x-space the 
computational domain is a periodic cube of side 27t so that when N independent 
Fourier modes are retained in each spatial direction, the wavevectors are all of the form 
k = (kz ,  k,, kz), with each component being an element of the integer set { - N/2 + 1, . . . , 
- 1, 0, 1, . . . , N/2}. Runs discussed here have N = 32,64 or 96. The solenoidal nature of 

u is enforced via projection of the nonlinear terms in k-space. If b(t = 0) is solenoidal, 
then the code maintains this property throughout the run. Dealiasing of the product 
terms is achieved through use of the ': rule' (Patterson & Orszag 1971 ; Canuto et al. 
1988). Time integration of the Fourier coefficients is carried out using an explicit 
second-order Runge-Kutta algorithm. Note that no forcing occurs so that the runs are 
freely decaying or 'run-down' in nature (the only exceptions are the equilibrium runs 
discussed in $3). 

Initial conditions for the runs are generated in k-space. For example, the amplitudes 
of u(k) are chosen so that the modal kinetic energy spectrum is given by 

E"(k) = al~(k)1~ 

where C is a normalization constant. Clearly for k 9 kknee the spectrum has a power- 
law form - k P ,  while for k < kknee the spectrum is flat. To determine the phase of each 
v(k), its real and imaginary parts are assigned using independent Gaussian random 
variables. Usually only a subset of the retained Fourier modes is initially populated, 
namely those lying between two limiting values, i.e. k ,  < k < k,. Initial conditions for 
the b(k) are chosen in a similar way, but note that controlling the degree of correlation 
between u and b allows specification of the cross-helicity. In all cases discussed here the 
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Run N v = ? /  Bo r c  f r m  Max k,(t) Label 

1 32 0.01 0 0.31 4 30.5 A1 
2 0.5 30.3 
3 1 .o 29.8 
5 4.0 28.0 
4 8.0 28.0 
7 32 0 0 0.3 1 15 A2 
8 0 1 .o 30 - 

9 32 0.01 0 0.01 4 29.3 B1 
10 0.1 29.3 
11 0.5 29.0 
12 1 .o 28.4 
13 3.0 26.2 
14 8.0 25.3 
15 32 0.005 1 .o 4 44.1 B2 
16 32 0.01 1 -0.03 8 22.5 c 1  
17 32 0.005 1 36.2 
c9 64 0.005 0 38.9 c 2  

c10 0.1 38.8 
cl1 1 .o 36.5 
c12 3.0 32.7 
c20 8.0 5 32.4 
c14 96 0.001 1 .o 0 6 110 D1 

TABLE 1. Run Parameters. A dot indicates that the value in the column is the same as the last one 
mentioned in the same column. Extra space between rows sets off runs having distinct initial 
conditions. For example, all the A runs have the same initial Fourier coefficients. However, the A1 
and A2 runs differ in the values of v and ?/ used. In each case the maximum wavenumber which is 
resolved in all directions is k,,, = N/2 

- 

total energy E is initially unity and is equipartitioned between the two forms at all 
scales, i.e. the Alfven ratio, rA(k) = E"(k)/Eb(k) is unity for each excited mode. 

While ideally very large Reynolds number runs should be performed, our computing 
resources were unfortunately such that only relatively low values of these parameters 
could be used, and even then most runs are under-resolved. By this we mean that the 
dissipation wavenumber, k,, characterizing the flow is greater than the maximum 
resolved wavenumber. For the case of unit magnetic Prandtl number, we define k,  
using 

Modes with k 9 k,  are heavily damped, and do not contribute significantly to the 
nonlinear dynamics. However modes with k - k, are dynamically significant and 
must be resolved to achieve accurate simulations (see for example Domaradzki, 
Rogallo & Brachet 1993). In practice, if a numerical simulation resolves k,, there is a 
good reason to be confident of the run's accuracy; however, if the reverse holds the 
accuracy is questionable, since errors at small scales will eventually lead to errors in the 
large-scale modes. Other consequences of under-resolution, in the context of the 
anisotropies which develop when B, + 0, will be discussed in $ 5 .  

Finally in this section we outline the types of runs performed. The procedure 
followed involved generating several distinct sets of runs. Within each set only one or 
two parameters were varied; these included B,, the Reynolds numbers, spatial 
resolution, and the cross-helicity. Consequences of varying other parameters, such as 
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Label kL. k ,  kknee f 2 ( t  = 0) J(t  = 0) 

Al ,  A2 3 8 1000 15.1 15.5 
B1, B2 3 8 1000 10.3 10.2 
c 1 ,  c2 1 3 4 2.7 2.6 
D1 1 3 4 2.1 2.1 

TABLE 2. Some parameters characterizing the distinct sets of initial Fourier coefficients. 
All runs had E" = E b  = a initially 

the Alfven ratio, will be discussed at a later date. This 'all other things being equal' 
approach, while perhaps somewhat artificial (particularly given the nonlinear nature of 
the turbulent interactions), does allow the various influences on the development of the 
anisotropies to be considered as independently as possible. Tables 1 and 2 summarize 
the parameters of runs referenced in this paper. 

3. Non-dissipative results 
Absolute equilibrium theories of MHD turbulence - that is, the (Gibbsian) statistical 

mechanics of the truncated and non-dissipative MHD equations in k-space - yield 
quantitative predictions for both the shape and the actual levels of various spectra 
(Kraichnan 1967; Frisch et al. 1975; Kraichnan & Montgomery 1980; Stribling & 
Matthaeus 1990). These predictions are non-physical since lack of dissipation means 
that excitations which encounter the high-k 'wall' in wavenumber space bounce back 
into the retained modes, mostly into the smaller scales because the k-space dynamics 
is approximately local. However, the reflected energy eventually modifies the character 
of the spectrum at all scales so that absolute equilibrium spectra are generally distinctly 
different from spectra associated with dissipative turbulence. Despite this Kraichnan 
(1973) has argued that the absolute equilibrium theories should still provide accurate 
information regarding spectral transfer directions. The idea is that since within each 
local wavenumber band the eddy turnover time and the time to relax to absolute 
equilibrium are of the same order, the fluid should tend to be in approximate absolute 
equilibrium (locally in k-space). Given these quantitative predictions, and assuming 
that time averaging is equivalent to ensemble averaging (i.e. ergodicity of the system), 
it follows that simulations with v = 9 = 0 can be used to test code accuracy. We now 
discuss a few runs of this type. 

Stribling (1991) and Stribling & Matthaeus (1990) have recently shown that when 
H ,  = 0 or B, += 0, the following formulae for the modal spectra hold: 

where Ntot is the number of retained modes, and the angle brackets indicate ensemble 
averaging. All three spectra are independent of k and thus flat. Note that in this limit 
( H ,  = 0 or B, =+ 0) the absolute equilibrium predictions (a)  are independent of B,, and 
(b) do not suggest that partial condensation of H,  into the kmin modes occurs (Stribling 
& Matthaeus 1990). 

Figure 1 displays some spectral results from the non-dissipative run 8. The spectra 
shown are obtained by time averaging over the final ten time units of the run, with the 
absolute equilibrium predictions plotted as dashed lines. Note that before time 
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FIGURE 1 .  Time-averaged omnidirectional spectra for run 8. The horizontal coordinate is 
wavenumber. Diamonds are numerical data points and the dashed curves the absolute equilibrium 
ensemble predictions: (a) magnetic energy, (b) kinetic energy, ( c )  AlfvCn ratio, and ( d )  cross-helicity. 
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FIGURE 2. Time histories of assorted bulk quantities for run 8. The horizontal coordinate is time 
(in units of the initial large-scale eddy turnover time). See $ 2  for symbol definitions. 

averaging occurred, the individual modal spectra were directionally averaged; that is, 
modes with values of k having the same magnitude were averaged over. Clearly, after 
such averaging modes with values of k having high degeneracy, with respect to k,  are 
more likely to give accurate results than those having lower degeneracy. The 
quantitative agreement between theory and simulation is seen to be excellent at all but 
the smallest and largest wavenumbers, which is indeed where the degeneracies are low. 
At low k not many modes exist so the statistics are intrinsically poor, while the finite 
truncation at high k removes many modes which would otherwise contribute. Similar 
plots for earlier time intervals show that the high- and low-wavenumber agreement 
improves as later time intervals are used. 

Figure 2 shows time histories of some bulk quantities from the same run. Clearly the 
non-zero rugged invariants (E  and H,) are accurately conserved. The evolution of the 
enstrophy, SZ = ( 0 2 ) / 2 ,  and the mean-square current density, J = ( j 2 ) / 2 ,  are also 
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plotted. Their charging-capacitor-like behaviour is in stark contrast to the growth- 
peakdecay curves characterizing dissipative flows (cf. figure 3).  Analogous plots 
for other non-dissipative runs (not shown) display similarly good agreement with 
theory; in particular, the time-averaged spectra show no dependence on B,. 
Furthermore, these non-dissipative runs are all isotropic for t 2 2, which may be 
interpreted as follows. Initially the excitations cascading out in k-space are unaware of 
the high-k ‘wall’. Thus, the nonlinear interactions proceed as if a finite dissipation scale 
exists and the anisotropy with respect to B, develops. However, once the excitations 
start being reflected at the ‘wall’, energy begins to build up at high wavenumbers and 
the spectral character is modified. After a characteristic time or so the energy has been 
redistributed such that there is approximate equipartition amongst all the modes, 
leading to overall isotropy. In contrast, the presence of dissipation leads to anisotropies 
which persist throughout the runs, as we now discuss. 

4. Development of anisotropy: influence of B, 
Having briefly discussed the evolution of non-dissipative MHD turbulence, we now 

turn to dissipative runs. As is well known, the infinite Reynolds number limits are 
highly singular - the equations of motion being of higher differential order when v and 
7 are non-zero. Hence, behaviour quite different from that of the previous section is to 
be expected, even for runs with otherwise identical initial conditions and parameters. 
Indeed, our main result is that a d.c. magnetic field can substantially alter the evolution 
of MHD turbulence, generating anisotropic fields out of isotropic ones in a few eddy 
turnover times. Such features are perhaps to be expected since B, imposes a preferred 
direction; however, it should be noted that in the corresponding non-dissipative runs, 
the initial development of anisotropy is soon reversed and isotropy restored. 

The first set of dissipative results we present are for the C2 runs. As indicated in table 
1 these runs have the same initial conditions, resolution, and dissipation coefficients; 
namely, low cross- and magnetic helicity, unit AlfvCn ratio, N = 64, and v = 7 = 1/200. 
The important distinction between the runs is the value of B,, which ranges from 0 to 
8. We will compare these runs using two types of diagnostic quantities: (a )  conventional 
bulk (or global) properties of the flow, and (b) ratios of various mean wavenumbers 
computed parallel and perpendicular to B,,. While the former provide a lumped or 
gross picture of some of the differences between the runs, such quantities are not really 
suitable for elucidating or extracting anisotropic features of the flows, prompting 
introduction of the latter. 

A few brief observations regarding time histories of the bulk quantities for the C2 
runs are in order. For clarity, only results from runs c9, cl 1, and c12 (with B, = 0, 1 
and 3 )  will be displayed in the next two figures. These features will be considered in 
more detail in $7, and are mentioned here mainly to give a feel for the runs as a whole. 
Consequently, no real attempt to explain the features and trends is made at this point. 

While qualitatively similar behaviour is observed across runs (figure 3) ,  several 
trends are evident. First, the energy plots show that increasing B, tends to make E” and 
E b  more nearly equal; that is, it better enforces rA = 1, in accord with the AlfvCn effect 
(Kraichnan 1965; Pouquet, Frisch & LCorat 1976). Second, the maxima in the 
enstrophy (52) and the mean-square current density ( J )  decrease as B, increases, 
suggesting that B, acts to suppress or inhibit the turbulence (see 57). 

As an aside, we note that the total energy remaining at the end of these (relatively 
short) runs is z 10-20% of the initial value, emphasizing that at these low Reynolds 
numbers dissipation is rather more important (relative to the nonlinear dynamics) than 
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FIGURE 3. Time histories of some bulk quantities from runs c9, c l l ,  and c12 ( v , ~  = 1/200): (a-c) 
energies for each run, ( d )  mean-square vector potential, ( e )  mean-square current density, (f) 
enstrophy. 

we would wish. Nonetheless, the clear maxima in 52 and J suggest that a (brief) period 
of turbulent dynamics does indeed occur, particularly for the lower-B, runs. Note that 
SZ and Jare  plotted using the same vertical scaling to better emphasize their differences 
when B, = 0 and 1, and their similarities when B, = 3. 

Third and finally, the time histories display more structure (or ‘fast’ fluctuations) 
as B, is increased, this being particularly noticeable for ( a 2 ) / 2  which is the lowest 
k-moment sum shown. This suggests that there may be an increased oscillatory 
contribution in such quantities. Since the frequency of AlfvCn waves is proportional to 
B,, this is at least plausible. However, frequency-domain power spectra for (a2)>/2,  J ,  
and 52 show no strong peaks away from the zero frequency one. This may be because 
the oscillations are masked by the overall decay of these globals. ‘Detrending’ of the 
data before the frequency Fourier analysis is performed may be called for (e.g. 
Blackman & Tukey 1958). 

Having considered the flows in terms of time histories of the globals, we now 
investigate the anisotropies which develop in the presence of B,. In order to quantify 
the degree of anisotropy associated with a flow, we introduce the generalized Shebalin 
(see SMM) angles, Oo, defined by the relation 

where k2, = ki + ki, Q is any one of the vector fields y, v, w,  a, b, j ,  and the summations 
extend over all values of k. Physically, tanzoo may be interpreted as the ratio of a 
weighted mean-square perpendicular wavenumber to its parallel counterpart, the 
weighting factor being the ‘energy’ spectrum for Q. With this definition, an isotropic 
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FIGURE 4. Generalized Shebalin angles for the C2 runs. Each curve (solid or broken) represents a 
distinct value of B,. In general the curves are ordered by their value of B,, larger values corresponding 
to stronger anisotropies. However, where ambiguity is possible (i.e. B, = 0,O. 1 and B, = 3,8) unique 
line styles are used as shown in the legend. In this and later figures all angles are in degrees. 

spectrum corresponds to B0 = tan-'1/2 z 54.74", whereas a spectrum having all its 
energy in modes perpendicular to B, has O0 = 90". As a shorthand we will speak of Q 
increasing or decreasing, where we define the orderings as $ < v < o and a < b < j .  

In figure 4 plots of OS for each field are shown as a function of time and B, for the 
C2 runs. Although the angles fluctuate, their initial behaviour when B, 2 is generally 
characterized by a more or less steady increase with time. At later times, and when 
B, 2 1, most of the angles attain approximately constant values; but note that the time 
taken to reach the plateaus appears to depend on both Q and B,. It is also evident that 
the degree of anisotropy increases with B,, at least for B, 5 3. Increasing B, above this 
value does not appear to markedly alter the degree of anisotropy which develops in the 
flows. This saturation can also be seen in figure 5, which displays the v-related angles 
at a fixed time ( t  = 2) as a function of B,. The b-type angles behave in a very similar 
fashion. We defer discussion on possible reasons for the saturations with time and B, 
to $8. Figure 4 also suggests that there is a minimum value of B, below which the 
anisotropy does not develop. The qualitative features pointed out in this paragraph 
were also seen in SMM's earlier study of two-dimensional MHD turbulence. 

Considering the runs individually for the moment, there are two points we wish to 
remark upon. First, for runs with B, 2 it is usually the case that 8$ < BV < O,o and that 
0, < 8, < B j ,  orderings also observed by SMM who attributed them to increased 
anisotropy at higher wavenumbers. To help understand this, consider the v-related 
angles and fields: The modal relations 

14k>12 = k21!ml2, 
14k)12 = k21@)I2, 
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FIGURE 5. The v-related Shebalin angles as a function of B, at t = 2 for the C2 runs. Note that 
B, = B,/(b2(t  = O)) ' /* .  From bottom to top the curves are for Q = I+?, u, and w ,  respectively. The 
diamonds indicate the actual numerical data points. 
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FIGURE 6 .  Ratios of r.m.s. wavenumbers for run c12 (B, = 3). The solid curves are for a = x and 
the dotted ones for a = y .  Again only the v-type angles are displayed. 

show that the velocity is more strongly dependent on the small-scale structure of the 
turbulence than is the stream function, while the vorticity's dependence is stronger still. 
Thus, if the anisotropy is more pronounced at smaller scales we would expect to see the 
above ordering of angles. Exactly analogous arguments hold for the b-type angles. 
Using the shorthand mentioned above we may phrase this result as: for a given B,, 
anisotropy increases as Q does. 

The stronger dependence on small-scale structure for 8, and 8, may also explain why, 
for strong B,, these angles reach their plateau levels faster than the lower-Q ones, 
despite having to achieve larger values : higher-wavenumber modes have shorter 
characteristic times and can thus achieve 'equilibrium' values faster than the lower-k 
modes. For the B, = 3 and 8 runs, the u-b and w j  angles level out at t % 4, whereas 
the $-u angles have apparently not done so by t = 8. Furthermore, comparing only the 
rapid-rise portions of the curves, the w-j angles reach 70" in half the time it takes for 
the v-b angles to do so. However, it should be noted that such behaviour might be a 
consequence of the low Reynolds numbers characterizing these flows. 

The second point regarding the individual runs is not obvious from figure 4, but 
plots of 8, and 8, on the same axes show that there is a small but definite tendency for 
8, to exceed 8, when 5 B, 5 3 .  We believe this to be a consequence of rA being 
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(31,31.0) 2) . 
\ I 

FIGURE 7. Isosurfaces for the squared electric current density. (a) The B1 initial conditions: the 
isotropy of the data is reflected in the absence of a preferred orientation direction for the tubes. 



Three-dimensional magnetohydrodynamic turbulence 107 

somewhat less than unity, the slightly greater magnetic energy leading to bigger values 
of Ob (this explanation also requires that r,(k) be a function of k, since simple 
proportionality of the kinetic and magnetic energy spectra would lead to equal 
Shebalin angles for the two fields). As noted above, B, 2 3 appears sufficient to enforce 
near-exact equipartition of the kinetic and magnetic energies, which explains the 
disappearance of the effect at high B,. Similar statements hold for 8, and @,, the ratio 
SZIJ being analogous to r,. 

While we have shown that significant anisotropies develop perpendicular to B,, it is 
unclear as to whether the perpendicular behaviour is itself isotropic or perhaps 
dominated by contributions from, say, the y-components of the variables. The 
equations of motion do not obviously suggest anything other than isotropic behaviour 
in the perpendicular planes, but it will be as well to check this. In order to do so we 
utilize the original Shebalin angles (SMM), but with a change of notation, 

where a = x or y, and, as above, Q is any one of the six major fields. Clearly, fully 
isotropic flows are characterized by $Qa = 45” for both values of a. Furthermore, 
equal values of tan$Q, and tan#QY indicate equal mean wavenumbers in the x- and 
y-directions, and are thus consistent with isotropy in the perpendicular planes. As 
expected, time histories of these angles (not shown) indicate approximate equipartition 
of energy in the perpendicular plane, for all values of B,. Thus, we judge that the 
turbulence remains isotropic in the perpendicular planes, despite the imbalance with 
respect to the parallel direction, and conclude that such two-dimensional isotropy is a 
natural feature of these runs. 

We may also consider the spectral anisotropy from a slightly different perspective. 
Because the Shebalin angles are defined in terms of inverse tangents, the extent of the 
two-dimensionality relative to B,, is not always clear. We therefore include plots of 
tan$& versus time from run c12; these represent the ratio of a mean perpendicular 
wavenumber to the parallel one, or equivalently the ratio of the parallel correlation 
length to a perpendicular one (figure 6). The ratios are modestly, but significantly, 
greater than unity. Indeed, the plot indicates that the ‘b’-field correlation length in the 
parallel direction is z 2.5 times that in a transverse direction. While this is well short 
of the ratios observed in experimental fusion devices (2 10, see references in SMM), 
the trend is clearly the same (presumably the Reynolds numbers are higher in these 
fusion devices). Similarly, the solar wind observations indicate that the minimum 
variance direction for MHD-scale magnetic fluctuations is usually aligned with the 
mean magnetic field (Klein, Roberts & Goldstein 1991). 

Finally in this section, we consider the x-space manifestations of the anisotropy by 
displaying a few isosurface plots of the electric current density (figure 7). The difference 
between the t = 2 isosurfaces for the B, = 0 and 3 runs is quite clear : in the former the 
surfaces are qualitatively similar to the initial conditions, being essentially unaligned 
blobs, whereas in the latter, there is a strong tendency for the tubes to be (a)  elongated, 
and (b) aligned with the B, direction, consistent with the greater correlation length in 
this direction. Vorticity isosurfaces as a function of time and B, show similar 
behaviour. 

(b)  Run 9 (B, = 0) at t = 2; at this time the enstrophy and mean-square current are close to their 
maximum values. (c)  Run 13 (B,, = 3) at t = 2 ;  the anisotropy has almost saturated by this time. Note 
the alignment of the tubes in the z-direction. The isosurface threshold in (a-c) figures is set at 60%, 
and the .$direction is vertical. 
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5. Anisotropy: influence of Y, 7, and spatial resolution 
Having found that B, + 0 can induce spectral anisotropy, it is of interest to 

investigate how this dynamical anisotropy varies as a function of the Reynolds 
numbers. Indeed, the main purpose of this section is to show that, for a given B,, the 
flows become more anisotropic as the Reynolds numbers are increased. There is, 
however, a caveat. Because the larger simulations are computationally demanding 
most runs are, to varying extents, under-resolved. Table 1 indicates the maximum 
resolved wavenumber and the maximum value of kd( t )  for each run. To assess the 
accuracy of under-resolved runs, we may compare runs c l l  and 17, which initially 
differ only in their resolutions, the former being significantly better resolved than the 
latter. 

Figure 8 displays plots of a few bulk quantities for these runs. In general, the 
agreement between the runs is qualitatively good, and indeed often quantitatively so, 
there being almost no visible difference in the energies for example. However, note the 
reduced and shifted maxima of i2 and J. Furthermore, when we consider the Shebalin 
angles (figure 9) clear discrepancies are also evident. Most important of these is the 
under-estimation of B,, and B j ,  that is, the angles most dependent on the small-scale 
structure of the turbulence (this consequence of under-resolution may explain why 
Hossain, Vahala & Montgomery 1985 did not see the OUl. < 8, < 8, ordering in their 
study of forced two-dimensional MHD turbulence with a BJ.  Since we are about to 
compare runs with different Reynolds numbers, we must keep in mind that quantities 
depending strongly on the high-k components of the fields will be less accurately 
represented in the more under-resolved runs. 

Consider runs c l  1 and 16, whose runtime parameters differ only in that the latter has 
half the resolution and double the dissipation coefficients of the former. As these two 
runs are almost resolved and also have B, = 1, they afford a clean opportunity to 
examine the Reynolds number dependence of the anisotropy. Figure 10 shows that the 
Shebalin angles characterizing these runs are always ordered such that 8,(cll) > Ba( 16) 
for given B,, except occasionally at early times. Also plotted are the Shebalin angles 
for another B, = 1 run, namely c14; this has initial large-scale Reynolds numbers of 
1000, but is significantly under-resolved. With such a high Reynolds number flow we 
expect B,(c14) > OQ(cll); however, the figure shows that this is only true for Q = $ 
and a. It is our belief that this is entirely a consequence of the under-resolved nature 
of run c14, and this stands as a warning regarding the dangers associated with 
interpreting such runs. Runs 12 and 15 have similarities to runs c l l  and c14, in the 
sense that the latter member of each pair is more under-resolved and has higher 
Reynolds numbers. Similar orderings of the Shebalin angles for these pairs are 
observed. 

We may also compare corresponding runs from the B1 ( u ,  7 = 1/100) and C2 
( v , ~  = 1/200) sets, which have quite different initial conditions in terms of spectral 
profiles and the initial values of SZ and J for example (table 2). Notwithstanding these 
differences, the Shebalin angles are still ordered in terms of increasing Reynolds 
numbers, that is 8,(C2) > O,(Bl) for the same B,. We therefore suggest that, provided 
the initial states are turbulent and approximately isotropic, flows with higher values of 
the Reynolds numbers will develop stronger anisotropies relative to B,. While in these 
simulations there is no hint of any saturation of the anisotropies occurring beyond 
critical values of the Reynolds numbers, such a possibility cannot be ruled out. 
Furthermore, the role of the finite-volume periodic domain may be important. In 
particular, these boundary conditions do not permit propagating fluctuations to 
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FIGURE 8. Over-plots of selected global quantities for the almost resolved run cl  1 (solid curves) and 
the under-resolved run 17 (dashed). The dotted curve in (a) is Eb for run c l l .  At times the dashed 
curves overlie the solid ones. 
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FIGURE 9. Comparison of some Shebalin angles for an almost-resolved run (cll ,  solid curves) and a 
clearly unresolved one (1 7, dashed curves). Aside from their resolution, these runs have identical 
initial parameters. Similar plots for the 'b'-type angles are identical in character. 

'escape' from the system, as they would in more realistic geometries. Nonetheless, at 
present we still agree with SMM, who stated that 'the smaller the dissipation 
coefficients, the greater the degree of anisotropy is likely to be'. 

This section would not be complete without a few words regarding the differences 
between dissipative and non-dissipative runs. While we do not show the plots, 
comparison of the Shebalin angles for runs 3 and 8 is revealing (see figure 10 in SMM). 
For the first 1-2 characteristic times, 8,(3) and 19,(8) are graphically indistinguishable. 
Beyond this however, the angles part company. The run 3 angles behave in essentially 
the same way as the angles discussed in the previous section, initially continuing to rise 
and then plateauing at convincingly non-isotropic levels. In contrast to this, the non- 
dissipative angles, 8,(8), decrease until attaining roughly the isotropic value and 
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FIGURE 10. Comparison of some of the Shebalin angles for runs cl 1 (solid curves) and 16 (dashed). 
The runs differ in their values of v and q, 1 /200 for run cl  1 and 1 / 100 for run 16. The dotted curves 
are for run c14, which has Re = Rm = 1000, but is under-resolved. 

thereafter fluctuate unsystematically about this level. Clearly, as discussed in SMM, 
sinks for the kinetic and magnetic energies appear to be essential if the anisotropy is 
to be maintained. If the resonance process outlined by SMM is responsible for the 
anisotropy, it would seem that higher-order effects swamp the weak-turbulence ones 
when v = 7 = 0. 

6. Anisotropy : influence of rugged invariants 
Obviously the factors considered above are not the only ones which can influence 

development of anisotropy. In this section we chiefly discuss the impact of non-zero 
cross-helicity. A few comments regarding the influence of some other well-known 
quadratic flow parameters are also made. We should however make it clear that this 
section is neither complete in its coverage nor exhaustive of possibilities. 

Cross-helicity. It is well known that increasing the normalized cross-helicity reduces 
the importance of the nonlinear terms in the equations of motion. More specifically, 
in high-a, flows spectral transfer is directly weakened owing to the reduced strength of 
the nonlinear couplings. In fact, rigorously extremal g, corresponds to u = 2 b, in 
which case the nonlinear terms exactly cancel, and there is no turbulence even when the 
Reynolds numbers are very large. Thus, for two flows A and B which have the same 
initial spectra but different phase relations such that 0 < v , ( A )  < a,(B) < 1, we might 
expect both to be turbulent, but flow B to be somewhat less so. As far as the 
development of anisotropy is concerned, non-zero a, will presumably lead to 
somewhat less-anisotropic states, all other things being equal. While we do not show 
the appropriate plots, comparison of the Shebalin angles for the A1 runs with those for 
the corresponding runs in the set B1 shows that this is indeed the case (when B, 2 i). 
Qualitatively speaking, the Shebalin angles for the two sets of runs are very similar. 
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FIGURE 11. Normalized cross-helicity as a function of time for runs 1, 3 and 5. Note the 
reduction in growth of re as B,, is increased. 

Quantitatively, however, the zero-cross-helicity runs tend to have larger values for a 
given B,, with the differences becoming more pronounced as Q increases. 

Note that dynamic alignment (Dobrowolny, Mangeney & Veltri 1980; Pouquet, 
Meneguzzi & Frisch 1986) occurs in the A1 runs. This turbulent relaxation process is 
characterized by IaJ --f 1 as t increases, even though both the energy and the cross- 
helicity are decaying. In other words, the cross-helicity decays more slowly than the 
energy, causing the flow to evolve towards a state where the nonlinear terms cancel. 
Figure 11 shows several examples from the A1 runs. Clearly, at least the characteristic 
timescale over which dynamic alignment takes place is affected by the value of B,, and 
it may be that the final state is too. Various groups (Grappin et al. 1982; Pouquet 
et al. 1986; Ting, Matthaeus & Montgomery 1986; Biskamp & Welter 1989; Stribling 
& Matthaeus 1991) have noted that when Igcl 5 0.2 dynamic alignment appears to 
operate only weakly, the growth of gc being approximately logarithmic in time 
(Grappin et al. 1982). Our results support this viewpoint. For example, the B1 runs, 
which have a,(t = 0) = 0.01, exhibit only very weak growth of crc for B, < 1, and 
actually reverses sign for larger values of B,. 

Magnetic helicity. As mentioned in the introduction, Stribling, Matthaeus, and co- 
workers (Stribling et al. 1994a, b)  recently investigated the behaviour of three- 
dimensional MHD flows with non-zero values of H,. Briefly, they found that the 
turbulent magnetic helicity nonlinearly decays toward zero, while a similar quantity 
(cc B, . j: E,(x, t )  dt where E,, = - ( u  x b ) ,  is the volume averaged induced electric 
field) grew at H,’s expense. The process continued until essentially no turbulent 
magnetic helicity remained, typically taking 5-10 Alfven times to complete. At this 
point the flow is in a state similar to the initial states investigated here, provided that 
the Reynolds numbers are still large enough to maintain a turbulent flow. We therefore 
conjecture that similar anisotropies with respect to B, will develop when H ,  =+ 0, but 
perhaps in a different fashion to that described herein while the redistribution of 
magnetic helicity is occurring (e.g. faster, slower, delayed onset). We stress that the 
nonlinear decay of H ,  is a consequence of its conversion into another magnetic- 
helicity-type quantity, and is not due to the dissipation of H ,  (Stribling et al. 1994a, b). 

Aljive!n ratio. While not actually a rugged invariant, the initial value of this parameter 
may have some effect on the development of the anisotropy. In particular, we expect 
values less than unity to be associated with greater anisotropy of the b-related fields 
relative to the corresponding ZI ones, e.g. 0, > Oc0. As discussed above. initial states with 
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r,4 = 1 exhibited this behaviour when B, took values strong enough to induce the 
anisotropy, but not so strong that it also imposed equipartition of kinetic and magnetic 
energy. However, even if r A  is initially far from unity, the situation is unlikely to persist 
for long since when B, =I= 0 the Alfven effect will soon enforce r A  z 1 (but see Biskamp 
& Welter 1989 and Stribling & Matthaeus 1991). Thus, we should not expect to see 
major differences in 8, and H j  (for example) enduring beyond an Alfven time or two. 
In other words, the correlation lengths for 52 and J should become fairly similar if they 
are not so initially, and similarly for E" and Eb.  

Kinetic helicity. Define this by Hk = ( u . w ) .  This too is not a rugged invariant, but 
since the momentum equation may be written in a form containing the term u x w ,  the 
kinetic helicity is another quantity whose presence tends to reduce the strength of the 
nonlinear couplings. In other words, Hk non-zero tends to make the flow less turbulent 
than it would be otherwise (ignoring possible dynamo effects). Thus, we suggest that 
just as (T, =l= 0 reduces the degree of anisotropy associated with a particular B,, so too 
will H ,  + 0. Naturally this will need to be verified. 

7. Other consequences of B, 
There are several other ways in which B, influences the development of a turbulent 

flow, aside from its anisotropy-inducing effects. We now consider some of these. 
Maxima and suppression of turbulence. The maxima of the enstrophy, 52, and the 

mean-square current density, J ,  decrease essentially monotonically as B, increases (cf. 
figure 3). Since growth of 52 and J is an indicator of the degree of turbulence developed 
in the flow, the decreasing maxima suggest that a d.c. magnetic field suppresses 
turbulence ever more strongly as its strength increases. In fact, naive examination of 
the equations of motion indicates that when B, is large the linear terms dominate the 
nonlinear ones, leading to the well-known result that u and b obey (dissipative) wave 
equations. However, this is not the whole story since the approximation fails to 
correctly account for the different perpendicular and parallel correlation lengths 
induced by B,. 

As noted by Frisch et al. (1983), imposing a sufficiently strong B, suppresses 
development of small-scale structures in that direction. It was their conjecture that this 
is a consequence of the lack of X-type neutral points in such flows, such sites being 
associated with intense generation of small-scale structures (e.g. o and j ) .  Whatever 
the reason, it does not follow that complete suppression of the turbulence ensues for 
large enough B,. By analogy with neutral fluid flows, where strong rotation can induce 
two-dimensionality of the flow (with respect to the rotation axis), it is physically 
plausible that an applied B, might do likewise for magnetofluids. In other words, the 
initially three-dimensional MHD turbulence could be reduced to largely decoupled 
planes of two-dimensional MHD turbulence, oriented perpendicular to B, (e.g. 
Cowling 1957). The isotropy inferred to be present in the perpendicular planes of the 
flows discussed herein is consistent with such a possibility, as are the disparate parallel 
and perpendicular correlation lengths. We should also note that recent work on nearly 
incompressible MHD (Zank & Matthaeus 1992a, b, 1993) shows that in the limit of 
strong B,,, the compressible three-dimensional MHD equations reduce to incom- 
pressible two-dimensional equations similar to those just discussed. So it would seem 
that all roads do lead to Rome in the sense that (a)  physically based arguments, (b) 
mathematical theorems and results, and (c) numerical simulations all indicate or 
suggest the same behaviour. 

Recall that when such incompressible two-dimensionality does ensue, B, no longer 
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plays a dynamical role for flow in the perpendicular planes, at least to leading order. 
This fact has been used to justify investigation of purely two-dimensional MHD 
turbulence with no B, (Biskamp & Welter 1989). While our results are not conclusive, 
we believe they provide further numerical support for this approach. Once simulations 
of sufficient size to resolve possible inertial ranges in the parallel and perpendicular 
directions are practical we will be in a much better position to test this belief. 

AlfvPn ratio. We have already discussed this quantity in several places above, so that 
here we make only a few additional points. With no d.c. field present, the initial 
equipartition of kinetic and magnetic energy disappears in a fraction of an eddy 
turnover time. In fact, the Alfven ratio quickly evolves towards values which are 
consistently and significantly less than unity, indicating development of an excess of 
magnetic energy over kinetic. Typically,. rA = 0.7 for B, 5 f, with rA(k)  being very 
roughly flat away from kmin and k,,,. 

Such an ‘excess’ of magnetic energy has been seen in many other simulations 
(Pouquet et al. 1976; Pouquet & Patterson 1978; SMM; Matthaeus & Lamkin 1986), 
and is also regularly observed in solar wind data (Matthaeus & Goldstein 1982; 
Roberts et al. 1987a, b). While no completely satisfactory explanation for this 
behaviour has yet been put forward, there are several candidates. Pouquet et al. (1976) 
argued that rA 5 1 is a consequence of local (in k-space) dynamo-type action, whereas 
Matthaeus & Lamkin (1986) suggested that it may be a consequence of the dynamics 
associated with small-scale magnetic reconnection (in particular, the formation of 
electric current filaments and vorticity quadrupole structures near the X-type neutral 
points). Because the simulations reported here have low Reynolds numbers, we have 
not attempted to verify the correctness of either of these theories. 

Biskamp & Welter (1989) have argued that since no kinetic invariants exist for MHD 
(two- or three-dimensional), the AlfvCn ratio should decrease as a function of time 
(assuming v = q), E” decaying faster than E b  because some magnetic energy is inverse- 
cascaded with the magnetic helicity and thus preserved against dissipation, which is 
most effective at small scales. This is essentially a selective decay argument (Matthaeus 
& Montgomery 1980; Ting et al. 1986); however, for two reasons it does not apply 
here. First, our runs have very little magnetic helicity and therefore the inverse cascade 
is only weakly active. Second, the presence of B, destroys the rugged invariance of H,, 
thus removing the basis for its inverse cascade; indeed, as noted above, recent work 
(Stribling et al. 1994a, b) indicates that what turbulent magnetic helicity there is is 
nonlinearly converted into another form which may or may not be associated with 
reduced dissipation of Eb. 

In concert with the development of ‘excess’ Eb,  it is also the case that Q / J 5  1, 
despite the initial (near) equivalence of o and j ,  both spectrally and in bulk terms. In 
particular, for runs with B, 5 1, the maximum value of J can exceed that of 52 by over 
25 % (cf. figure 3). It is not necessary that ‘excess’ E b  (in the sense that it leads to values 
of rA < 1) will automatically yield ‘excess’ J - ((V x b)2) ,  relative to 52. However, it 
appears that this is indeed the case, at least for initial spectral distributions of o and 
j which differ essentially only in their phases. We have already noted above that at 
higher values of B, the AlfvCn effect comes into play, leading to approximate 
equipartition of the turbulent kinetic and magnetic energies. Increasing B, also causes 
52/J to approach unity. 

Kinetic and magnetic helicities. While both these quantities are initially small, and 
indeed remain so throughout the runs, their time histories do show dependencies on B,. 
In particular, frequency-domain power spectra for H ,  and H ,  show pronounced peaks 
at even multiples of B,. As noted above, AlfvCn waves have a frequency proportional 
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to B, so that one possible interpretation of the power-spectra data is that Alfven waves 
are important for these two quantities. 

8. Summary and discussion 
We have found that a d.c. magnetic field (B,) imposed on three-dimensional MHD 

turbulence induces enhanced transfer of excitations to perpendicular modes, relative to 
parallel ones. This anisotropy, as measured by ratios of correlation lengths, tends to 
increase with (i) B, (saturation occurs for a value 2 3 ) ,  (ii) wavenumber (power of k in 
Q), (iii) Re and Rm, (iv) time (with a saturation depending on Q and Re, Rm), and (v) 
decreasing gc. Furthermore, increasing B, suppresses the turbulence in the sense that 
it reduces (a)  the relative strength of the nonlinear couplings, (b) the maxima of SZ and 
J, and (c) the effectiveness of dynamic alignment (which itself contributes to (a)). 

The behaviour of factors (i)-(iv) is in almost complete qualitative agreement with the 
two-dimensional results of SMM. The slight discrepancy concerns the value of B, at 
which anisotropy saturation occurs. While this ‘critical’ value is not determined 
precisely in either investigation, the three-dimensional value is almost certainly greater 
than the two-dimensional one. Given that there is an additional perpendicular degree 
of freedom in the three-dimensional geometry, this is quite reasonable. 

The reasons for the saturations with B, and time are unclear to us. The latter may 
be a consequence of the low Reynolds numbers used here. For example, if the flows 
were fully turbulent for say 20 characteristic times instead of the M 3 we have here, 
saturation with time might occur at both a later time and a higher level, In other words, 
the lack of sustained turbulence in the flows may be prematurely curtailing the degree 
of anisotropy which develops. We intend to investigate this possibility using randomly 
forced turbulence. The saturation with B, is perhaps more fundamental, and may be 
related to the relatively decreased strength of the nonlinear couplings at high B,. 

Before proceeding with the discussion we address a point relating to the nature of 
the numerical solutions. Because we are considering isotropy versus anisotropy in this 
paper, it might be thought that a spherical truncation in Fourier space should be 
performed (as was done by SMM). There are, however, several arguments as to why 
this does not seem to be necessary. First, a few such truncation runs have been 
performed, wherein modes with k2 3 ( N / 2 ) 2  are maintained at zero. The initial 
conditions for these runs were identical to some of those used in the non-truncated runs 
discussed above. In each case the Shebalin angles for corresponding runs differed by 
less than 0.8 O/O, being all but visually indistinguishable when plotted on the same axes. 
Similar agreement is seen for the bulk parameters. 

Second, dissipative simulations with no spherical truncation and B, M 0 remain 
isotropic at all times investigated, suggesting that modes outside the truncation sphere 
(but within the cube) do not cause significant departures from isotropy, at least for the 
runs reported on here. In fact, ‘corner’ modes where k M ( N / 2 ,  N / 2 ,  N / 2 )  make an 
isotropic contribution to the Shebalin angles so that their inclusion leads to under- 
estimation of the anisotropies, although in view of the first point above the effect is not 
significant here. These points suggest that isotropic truncation is not essential for 
maintaining high accuracy in simulations with modest Reynolds numbers, such as 
those considered here. 

As noted in the introduction, the work described in this paper is complementary to 
that of the earlier (analytic) study of Moffatt (1967). Using our notation, his results 
apply for the time range 0 < t + 1, with Re 9 1, Rm + 1, b(t = 0) = 0, and v(t = 0) 
turbulent, whereas our simulations have both v and b initially turbulent, and at best 
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Re = Rm = 200 with 0 < t 5 10. It follows that no direct comparison of the two 
studies is possible. Unfortunately, even if it were, the Reynolds numbers achieved 
herein are still far too small to support resolution of the various power-law scalings of 
E”(t) and Eb(t)  which emerge from Moffatt’s analysis. 

While the two studies have considered the development of anisotropy from different 
perspectives, we do wish to remark on Moffatt’s prediction regarding the variances of 
the velocity components. With v = (uz, uy, uz),  his calculations indicated that W = 
3(u,2)/(u2) should increase from unity at t = 0, to before t = 1, that is an ‘excess’ of 
(u,“) should develop. Moffatt referred to this as partial ‘channelling’ of the kinetic 
energy into the component parallel to B,. We too saw a tendency for such an excess 
to occur, not just at early times but throughout the simulations, although in our case 
W usually took values closer to 1 than g. Similar behaviour was observed for the 
analogous magnetic quantity. It may therefore be the case that this type of anisotropy - 
generated during the early-time linear phase of the dynamics - also persists well 
into the nonlinear phase. 

There is a somewhat subtle point that arises regarding the relationship between 
incompressibility, which is assumed here, and the role of anisotropy, which emerges 
dynamically in the present study. Depending upon the desired application, we might 
view the magnetofluid as a conducting ideal gas that is behaving incompressibly, or 
more precisely, nearly incompressibly. Although this type of behaviour is frequently 
treated as a simple consequence of low Mach number, a more precise characterization 
of the approach of compressible dynamics to incompressible dynamics is a somewhat 
delicate matter. Zank & Matthaeus (1993, see also references therein) have examined 
the asymptotic low-Mach-number approach of a compressible ideal gas magnetofluid 
to dynamical states of near incompressibility. 

For high plasma /3, solutions to the three-dimensional incompressible MHD 
equations, identical to those employed here, are recovered as the leading-order 
dynamical behaviour, subject to certain bounds on the compressive component of the 
initial data. For this case, the results we find here carry over directly. However, for 
plasma p of order unity or smaller, Zank & Matthaeus (1993) found that geometrical 
restrictions on the initial data are also required in order to recover leading-order 
incompressible solutions. In particular, initial data giving rise to this type of nearly 
incompressible dynamics are restricted to being highly anisotropic, with the excited 
wave vectors being those almost perpendicular to the applied magnetic field. This is, 
of course, the same kind of anisotropy we observe in the incompressible framework. 
Thus, it is not at all clear that the present results have immediate consequences for 
/? 5 1 compressible MHD. In particular, the process of obtaining the incompressible 
limit seems to require the anisotropy that we find only after assuming that 
incompressibility is already obtained. On the other hand, we cannot rule out the 
possibility that anisotropy of the type we describe here emerges in these cases even 
when we do not enforce strict adherence to the conditions that give rise to 
incompressibility. Thus, for low-/3 MHD, which is of great importance in space 
physics and astrophysics, it remains a matter of considerable interest to further 
investigate the dynamical emergence of anisotropy for compressible MHD, both in the 
incompressible limit and in the highly compressive regime. 

Having established that two- and three-dimensional incompressible systems are 
largely equivalent as far as the development of I?,-induced anisotropy is concerned, 
further extensions to work along these lines can perhaps be most effectively carried out 
using two-dimensional codes with B, in the plane. This would of course allow 
investigation of flows with much higher Reynolds numbers. However, a possible 
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drawback to this approach is the inherent one-dimensionality of the perpendicular 
direction for such two-dimensional systems. Quite how important Be's suppression of 
turbulence is in high Reynolds number flows, both forced and unforced, remains to be 
determined. In this context, the implications for current sheet formation and structure, 
and also for reconnection, are of theoretical and physical interest. 

Finally, we comment on SMM’s point regarding the implications of self-generating 
anisotropy for MHD turbulence theory. They noted that closures (DIA, EDQNM, 
TFM, etc.) and cascade analyses almost always assume isotropy, with extension to 
anisotropic cases being quite involved or even intractable. If, however - as physical 
insight, mathematical analysis, and simulations suggest - there is indeed a reduction 
of three-dimensional MHD turbulence to decoupled planes of isotropic two- 
dimensional turbulence (at leading order), the news is not all bad. Direct numerical 
simulations of strictly two-dimensional MHD turbulence at Re, Rm - lo5 are almost 
within practical reach. 
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